Higher Strength, Lighter Weight Aluminum Spacecraft Structures, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

This SBIR Phase I program proposes to develop a bulk processing technology for producing ultra fine grain (UFG) aluminum alloy structures. The goal is to demonstrate a practical, production level manufacturing approach for producing bulk-sized aluminum alloy structures and eventually near-net shape components with nano-scale microstructures. Ultra fine grain aluminum alloys could be particularly advantageous for higher performance, lighter weight spacecraft structures, airframes, and space-frames and structural components needed for next generation commercial and military systems. The effect of different thermo-mechanical conditions to achieve the requisite microstructure-properties also needs to be understood, and will be developed in this project.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Transition45 Technologies, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Orange, California
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Higher Strength, Lighter Weight Aluminum Spacecraft Structures Project Image

Table of Contents

Project Introduction Primary U.S. Work Locations	1	
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)		
Technology Areas		
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Higher Strength, Lighter Weight Aluminum Spacecraft Structures, Phase I

Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
California	Virginia	

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137523)

Images

Project Image

Higher Strength, Lighter Weight Aluminum Spacecraft Structures Project Image (https://techport.nasa.gov/imag e/132874)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Transition45 Technologies, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Edward Chen

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Higher Strength, Lighter Weight Aluminum Spacecraft Structures, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - ☐ TX12.1.1 Lightweight
 Structural Materials

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

